`
ydbc
  • 浏览: 722647 次
  • 性别: Icon_minigender_1
  • 来自: 大连
文章分类
社区版块
存档分类
最新评论

gcc

 
阅读更多

gcc使用的方法 -- 作者: www.linuxfans.org mozilla
1。gcc包含的c/c++编译器
gcc,cc,c++,g++,gcc和cc是一样的,c++和g++是一样的,一般c程序就用gcc编译,c++程序就用g++编译

2。gcc的基本用法
gcc test.c这样将编译出一个名为a.out的程序
gcc test.c -o test这样将编译出一个名为test的程序,-o参数用来指定生成程序的名字

3。为什么会出现undefined reference to 'xxxxx'错误?
首先这是链接错误,不是编译错误,也就是说如果只有这个错误,说明你的程序源码本身没有问题,是你用编译器编译时参数用得不对,你没有指定链接程序要用到得库,比如你的程序里用到了一些数学函数,那么你就要在编译参数里指定程序要链接数学库,方法是在编译命令行里加入-lm。

4。-l参数和-L参数
-l参数就是用来指定程序要链接的库,-l参数紧接着就是库名,那么库名跟真正的库文件名有什么关系呢?
就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把库文件名的头lib和尾.so去掉就是库名了。

好了现在我们知道怎么得到库名了,比如我们自已要用到一个第三方提供的库名字叫libtest.so,那么我们只要把libtest.so拷贝到/usr/lib里,编译时加上-ltest参数,我们就能用上libtest.so库了(当然要用libtest.so库里的函数,我们还需要与libtest.so配套的头文件)。

放在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接了,但如果库文件没放在这三个目录里,而是放在其他目录里,这时我们只用-l参数的话,链接还是会出错,出错信息大概是:"/usr/bin/ld: cannot find -lxxx",也就是链接程序ld在那3个目录里找不到libxxx.so,这时另外一个参数-L就派上用场了,比如常用的X11的库,它放在/usr/X11R6/lib目录下,我们编译时就要用-L/usr/X11R6/lib -lX11参数,-L参数跟着的是库文件所在的目录名。再比如我们把libtest.so放在/aaa/bbb/ccc目录下,那链接参数就是-L/aaa/bbb/ccc -ltest

另外,大部分libxxxx.so只是一个链接,以RH9为例,比如libm.so它链接到/lib/libm.so.x,/lib/libm.so.6又链接到/lib/libm-2.3.2.so,如果没有这样的链接,还是会出错,因为ld只会找libxxxx.so,所以如果你要用到xxxx库,而只有libxxxx.so.x或者libxxxx-x.x.x.so,做一个链接就可以了ln -s libxxxx-x.x.x.so libxxxx.so

手工来写链接参数总是很麻烦的,还好很多库开发包提供了生成链接参数的程序,名字一般叫xxxx-config,一般放在/usr/bin目录下,比如gtk1.2的链接参数生成程序是gtk-config,执行gtk-config --libs就能得到以下输出"-L/usr/lib -L/usr/X11R6/lib -lgtk -lgdk -rdynamic -lgmodule -lglib -ldl -lXi -lXext -lX11 -lm",这就是编译一个gtk1.2程序所需的gtk链接参数,xxx-config除了--libs参数外还有一个参数是--cflags用来生成头文
件包含目录的,也就是-I参数,在下面我们将会讲到。你可以试试执行gtk-config --libs --cflags,看看输出结果。
现在的问题就是怎样用这些输出结果了,最苯的方法就是复制粘贴或者照抄,聪明的办法是在编译命令行里加入这个`xxxx-config --libs --cflags`,比如编译一个gtk程序:gcc gtktest.c `gtk-config --libs --cflags`这样就差
不多了。注意`不是单引号,而是1键左边那个键。

除了xxx-config以外,现在新的开发包一般都用pkg-config来生成链接参数,使用方法跟xxx-config类似,但xxx-config是针对特定的开发包,但pkg-config包含很多开发包的链接参数的生成,用pkg-config --list-all命令可以列出所支持的所有开发包,pkg-config的用法就是pkg-config pagName --libs --cflags,其中pagName是包名,是pkg-config--list-all里列出名单中的一个,比如gtk1.2的名字就是gtk+,pkg-config gtk+ --libs --cflags的作用跟gtk-config --libs --cflags是一样的。比如:gcc gtktest.c `pkg-config gtk+ --libs --cflags`。

5。-include和-I参数
-include用来包含头文件,但一般情况下包含头文件都在源码里用#include xxxxxx实现,-include参数很少用。-I参数是用来指定头文件目录,/usr/include目录一般是不用指定的,gcc知道去那里找,但是如果头文件不在/usr/include里我们就要用-I参数指定了,比如头文件放在/myinclude目录里,那编译命令行就要加上-I/myinclude参数了,如果不加你会得到一个"xxxx.h: No such file or directory"的错误。-I参数可以用相对路径,比如头文件在当前目录,可以用-I.来指定。上面我们提到的--cflags参数就是用来生成-I参数的。

6。-O参数
这是一个程序优化参数,一般用-O2就是,用来优化程序用的,比如gcc test.c -O2,优化得到的程序比没优化的要小,执行速度可能也有所提高(我没有测试过)。

7。-shared参数
编译动态库时要用到,比如gcc -shared test.c -o libtest.so

8。几个相关的环境变量
PKG_CONFIG_PATH:用来指定pkg-config用到的pc文件的路径,默认是/usr/lib/pkgconfig,pc文件是文本文件,扩展名是.pc,里面定义开发包的安装路径,Libs参数和Cflags参数等等。
CC:用来指定c编译器。
CXX:用来指定cxx编译器。
LIBS:跟上面的--libs作用差不多。
CFLAGS:跟上面的--cflags作用差不多。
CC,CXX,LIBS,CFLAGS手动编译时一般用不上,在做configure时有时用到,一般情况下不用管。
环境变量设定方法:export ENV_NAME=xxxxxxxxxxxxxxxxx

9。关于交叉编译
交叉编译通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上,比如在我们地PC平台(X86 CPU)上编译出能运行在sparc CPU平台上的程序,编译得到的程序在X86 CPU平台上是不能运行的,必须放到sparc CPU平台上才能运行。
当然两个平台用的都是linux。

这种方法在异平台移植和嵌入式开发时用得非常普遍。

相对与交叉编译,我们平常做的编译就叫本地编译,也就是在当前平台编译,编译得到的程序也是在本地执行。

用来编译这种程序的编译器就叫交叉编译器,相对来说,用来做本地编译的就叫本地编译器,一般用的都是gcc,但这种gcc跟本地的gcc编译器是不一样的,需要在编译gcc时用特定的configure参数才能得到支持交叉编译的gcc。

为了不跟本地编译器混淆,交叉编译器的名字一般都有前缀,比如sparc-xxxx-linux-gnu-gcc,sparc-xxxx-linux-gnu-g++ 等等

10。交叉编译器的使用方法
使用方法跟本地的gcc差不多,但有一点特殊的是:必须用-L和-I参数指定编译器用sparc系统的库和头文件,不能用本地(X86)
的库(头文件有时可以用本地的)。
例子:
sparc-xxxx-linux-gnu-gcc test.c -L/path/to/sparcLib -I/path/to/sparcInclude

- 作者:michaelbob2005年03月20日, 星期日 14:08 回复(0)| 引用(0)加入博采

[转贴] GCC 使用指南
:[转贴] GCC 使用指南
使用语法:


option | filename ]...

其中 option 为 gcc 使用时的选项(后面会再详述),
   而 filename 为欲以 gcc 处理的文件

说明:
这 C 与 C++ 的 compiler 已将产生新程序的相关程序整合起来。产 生一个新的程序需要经过四个阶段:预处理、编译、汇编、连结,而这两 个编译器都能将输入的文件做不同阶段的处理。虽然原始程序的扩展名可 用来分辨编写原始程序码所用的语言,但不同的compiler,其预设的处理 程序却各不相同:

gcc  预设经由预处理过(扩展名为.i)的文件为 C 语言,并於程式
      连结阶段以 C 的连结方式处理。

g++  预设经由预处理过(扩展名为.i)的文件为 C++ 语言,并於程序连结阶段以 C++ 的连结方式处理。

原始程序码的扩展名指出所用编写程序所用的语言,以及相对应的处理方法:

   .c  C 原始程序         ; 预处理、编译、汇编
   .C  C++ 原始程序        ; 预处理、编译、汇编
   .cc C++ 原始程序        ; 预处理、编译、汇编
   .cxx C++ 原始程序        ; 预处理、编译、汇编
   .m  Objective-C 原始程序    ; 预处理、编译、汇编
   .i  已经过预处理之 C 原始程序  ; 编译、汇编
   .ii 已经过预处理之 C++ 原始程序 ; 编译、汇编
   .s  组合语言原始程序      ; 汇编
   .S  组合语言原始程序      ; 预处理、汇编
   .h  预处理文件(标头文件)    ; (不常出现在指令行)

其他扩展名的文件是由连结程序来处理,通常有:
   .o  Object file
   .a  Archive file

除非编译过程出现错误,否则 "连结" 一定是产生一个新程序的最
   後阶段。然而你也可以以 -c、-s 或 -E 等选项,将整个过程自四
   个阶段中的其中一个停止。在连结阶段,所有与原始码相对应的
   .o 文件、程序库、和其他无法自文件名辨明属性的文件(包括不以 .o
   为扩展名的 object file 以及扩展名为 .a 的 archive file)都会
   交由连结程序来处理(在指令行将那些文件当作连结程序的参数传给
   连结程序)。

选项:

   不同的选项必须分开来下:例如 `-dr' 这个选项就与 `-d -r' 大
   不相同。
   绝大部份的 `-f' 及 `-W' 选项都有正反两种形式:-fname 及
   -fno-name (或 -Wname 及 -Wno-name)。以下只列出非预设的那个
   形式。
   以下是所有选项的摘要。以形式来分类。选项的意义将另辟小节说
   明。

   一般性(概略、常用的)选项
       -c -S -E -o file -pipe -v -x language

   程序语言选项
       -ansi -fall-virtual -fcond-mismatch
       -fdollars-in-identifiers -fenum-int-equiv
       -fexternal-templates -fno-asm -fno-builtin
       -fno-strict-prototype -fsigned-bitfields
       -fsigned-char -fthis-is-variable
       -funsigned-bitfields -funsigned-char
       -fwritable-strings -traditional -traditional-cpp
       -trigraphs

   编译时的警告选项
       -fsyntax-only -pedantic -pedantic-errors -w -W
       -Wall -Waggregate-return -Wcast-align -Wcast-qual
       -Wchar-subscript -Wcomment -Wconversion
       -Wenum-clash -Werror -Wformat -Wid-clash-len
       -Wimplicit -Winline -Wmissing-prototypes
       -Wmissing-declarations -Wnested-externs -Wno-import
       -Wparentheses -Wpointer-arith -Wredundant-decls
       -Wreturn-type -Wshadow -Wstrict-prototypes -Wswitch
       -Wtemplate-debugging -Wtraditional -Wtrigraphs
       -Wuninitialized -Wunused -Wwrite-strings

   除错选项
       -a -dletters -fpretend-float -g -glevel -gcoff
       -gxcoff -gxcoff+ -gdwarf -gdwarf+ -gstabs -gstabs+
       -ggdb -p -pg -save-temps -print-file-name=library
       -print-libgcc-file-name -print-prog-name=program

  最佳化选项
       -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
       -fdelayed-branch -felide-constructors
       -fexpensive-optimizations -ffast-math -ffloat-store
       -fforce-addr -fforce-mem -finline-functions
       -fkeep-inline-functions -fmemoize-lookups
       -fno-default-inline -fno-defer-pop
       -fno-function-cse -fno-inline -fno-peephole
       -fomit-frame-pointer -frerun-cse-after-loop
       -fschedule-insns -fschedule-insns2
       -fstrength-reduce -fthread-jumps -funroll-all-loops
       -funroll-loops -O -O2

   预处理选项
       -Aassertion -C -dD -dM -dN -Dmacro[=defn] -E -H
       -idirafter dir -include file -imacros file -iprefix
       file -iwithprefix dir -M -MD -MM -MMD -nostdinc -P
       -Umacro -undef

   汇编程序选项
       -Wa,option
   连结程序选项
       -llibrary -nostartfiles -nostdlib -static -shared
       -symbolic -Xlinker option -Wl,option -u symbol

  目录选项
       -Bprefix -Idir -I- -Ldir

  Target Options
       -b machine -V version

  与机器(平台)相关的选项
       M680x0 Options
       -m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
       -mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
       -mrtd -mshort -msoft-float

VAX Options
       -mg -mgnu -munix

SPARC Options
       -mepilogue -mfpu -mhard-float -mno-fpu
       -mno-epilogue -msoft-float -msparclite -mv8
       -msupersparc -mcypress

Convex Options
       -margcount -mc1 -mc2 -mnoargcount

AMD29K Options
       -m29000 -m29050 -mbw -mdw -mkernel-registers
       -mlarge -mnbw -mnodw -msmall -mstack-check
       -muser-registers

M88K Options
       -m88000 -m88100 -m88110 -mbig-pic
       -mcheck-zero-division -mhandle-large-shift
       -midentify-revision -mno-check-zero-division
       -mno-ocs-debug-info -mno-ocs-frame-position
       -mno-optimize-arg-area -mno-serialize-volatile
       -mno-underscores -mocs-debug-info
       -mocs-frame-position -moptimize-arg-area
       -mserialize-volatile -mshort-data-num -msvr3 -msvr4
       -mtrap-large-shift -muse-div-instruction
       -mversion-03.00 -mwarn-passed-structs

  RS6000 Options
       -mfp-in-toc -mno-fop-in-toc

RT Options
       -mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
       -mfull-fp-blocks -mhc-struct-return -min-line-mul
       -mminimum-fp-blocks -mnohc-struct-return

MIPS Options
       -mcpu=cpu type -mips2 -mips3 -mint64 -mlong64
       -mlonglong128 -mmips-as -mgas -mrnames -mno-rnames
       -mgpopt -mno-gpopt -mstats -mno-stats -mmemcpy
       -mno-memcpy -mno-mips-tfile -mmips-tfile
       -msoft-float -mhard-float -mabicalls -mno-abicalls
       -mhalf-pic -mno-half-pic -G num -nocpp

i386 Options
       -m486 -mno-486 -msoft-float -mno-fp-ret-in-387

HPPA Options
       -mpa-risc-1-0 -mpa-risc-1-1 -mkernel -mshared-libs
       -mno-shared-libs -mlong-calls -mdisable-fpregs
       -mdisable-indexing -mtrailing-colon

  i960 Options
       -mcpu-type -mnumerics -msoft-float
       -mleaf-procedures -mno-leaf-procedures -mtail-call
       -mno-tail-call -mcomplex-addr -mno-complex-addr
       -mcode-align -mno-code-align -mic-compat
       -mic2.0-compat -mic3.0-compat -masm-compat
       -mintel-asm -mstrict-align -mno-strict-align
       -mold-align -mno-old-align

  DEC Alpha Options
       -mfp-regs -mno-fp-regs -mno-soft-float -msoft-float

  System V Options
       -G -Qy -Qn -YP,paths -Ym,dir

  Code Generation Options
       -fcall-saved-reg -fcall-used-reg -ffixed-reg
       -finhibit-size-directive -fnonnull-objects
       -fno-common -fno-ident -fno-gnu-linker
       -fpcc-struct-return -fpic -fPIC
       -freg-struct-returno -fshared-data -fshort-enums
       -fshort-double -fvolatile -fvolatile-global
       -fverbose-asm

PRAGMAS
   Two `#pragma' directives are supported for GNU C++, to
   permit using the same header file for two purposes: as a
   definition of interfaces to a given object class, and as
   the full definition of the contents of that object class.

   #pragma interface
       (C++ only.) Use this directive in header files
       that define object classes, to save space in most
       of the object files that use those classes. Nor-
       mally, local copies of certain information (backup
       copies of inline member functions, debugging infor-
       mation, and the internal tables that implement vir-
       tual functions) must be kept in each object file
       that includes class definitions. You can use this
       pragma to avoid such duplication. When a header
       file containing `#pragma interface' is included in
       a compilation, this auxiliary information will not
       be generated (unless the main input source file it-
       self uses `#pragma implementation'). Instead, the
       object files will contain references to be resolved
       at link time.

   #pragma implementation

   #pragma implementation "objects.h"
       (C++ only.) Use this pragma in a main input file,
       when you want full output from included header
       files to be generated (and made globally visible).
       The included header file, in turn, should use
       `#pragma interface'. Backup copies of inline mem-
       ber functions, debugging information, and the in-
       ternal tables used to implement virtual functions
       are all generated in implementation files.

       If you use `#pragma implementation' with no argu-
       ment, it applies to an include file with the same
       basename as your source file; for example, in
       `allclass.cc', `#pragma implementation' by itself
       is equivalent  to  `#pragma  implementation
       "allclass.h"'. Use the string argument if you want
       a single implementation file to include code from
       multiple header files.

       There is no way to split up the contents of a sin-
       gle header file into multiple implementation files.

文件说明
   file.c       C source file
   file.h       C header (preprocessor) file
   file.i       经预处理过的 C source file
   file.C       C++ source file
   file.cc      C++ source file
   file.cxx     C++ source file
   file.m       Objective-C source file
   file.s       assembly language file
   file.o       object file
   a.out       link edited output
   TMPDIR/cc*     temporary files
   LIBDIR/cpp     preprocessor
   LIBDIR/cc1     compiler for C
   LIBDIR/cc1plus   compiler for C++
   LIBDIR/collect   linker front end needed on some machines
   LIBDIR/libgcc.a  GCC subroutine library
   /lib/crt[01n].o  start-up routine
   LIBDIR/ccrt0  additional start-up routine for C++
   /lib/libc.a    standard C library, 参阅 man page intro(3)
   /usr/include  standard directory for #include files
   LIBDIR/include   standard gcc directory for #include files
   LIBDIR/g++-include additional g++ directory for #include

   LIBDIR is usually /usr/local/lib/machine/version.
   TMPDIR comes from the environment variable TMPDIR (default
   /usr/tmp if available, else /tmp).

gcc最佳编译参数

摘要   本文着重介绍在不同的硬件环境下给GCC指定哪些参数才可以得到最佳的性能。   这篇文章是从一个名为Gentoo Linux的发行版的编程说明书里面分离出来的,希望对大家编译程序有帮助。

--------------------------------------------------------------------------------
一、1.2版(gcc 2.9.x版)
i386 (Intel), do you really want to install gentoo on that? CHOST="i386-pc-linux-gnu" CFLAGS="-march=i386 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i386 -O3 -pipe -fomit-frame-pointer"
i486 (Intel), do you really want to install gentoo on that? CHOST="i486-pc-linux-gnu" CFLAGS="-march=i486 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i486 -O3 -pipe -fomit-frame-pointer"
Pentium, Pentium MMX+, Celeron (Mendocino) (Intel) CHOST="i586-pc-linux-gnu" CFLAGS="-march=pentium -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium -O3 -pipe -fomit-frame-pointer"
Pentium Pro/II/III/4, Celeron (Coppermine), Celeron (Willamette?) (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=i686 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i686 -O3 -pipe -fomit-frame-pointer"
Eden C3/Ezra (Via) CHOST="i586-pc-linux-gnu" CFLAGS="-march=i586 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i586 -O3 -pipe -fomit-frame-pointer"
Quote : I did the original gentoo install using 1.2, with gcc 2.95 using -march=i586. i686 won't work.
K6 or beyond (AMD) CHOST="i586-pc-linux-gnu" CFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer"
(A Duron will report "Athlon" in its /proc/cpuinfo)
Athlon (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer"
For the following, i don't know of any flag that enhance performances..., do you ?
PowerPC CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer" CXXFLAGS="-O3 -pipe -fomit-frame-pointer"
Sparc CHOST="sparc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer" CXXFLAGS="-O3 -pipe -fomit-frame-pointer"
Sparc 64 CHOST="sparc64-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer" CXXFLAGS="-O3 -pipe -fomit-frame-pointer"

二、1.4版(gcc 3.x版):
i386 (Intel), do you really want to install gentoo on that ? CHOST="i386-pc-linux-gnu" CFLAGS="-march=i386 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i386 -O3 -pipe -fomit-frame-pointer"
i486 (Intel), do you really want to install gentoo on that ? CHOST="i486-pc-linux-gnu" CFLAGS="-march=i486 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i486 -O3 -pipe -fomit-frame-pointer"
Pentium 1 (Intel) CHOST="i586-pc-linux-gnu" CFLAGS="-march=pentium -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium -O3 -pipe -fomit-frame-pointer"
Pentium MMX (Intel) CHOST="i586-pc-linux-gnu" CFLAGS="-march=pentium-mmx -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium-mmx -O3 -pipe -fomit-frame-pointer"
Pentium PRO (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentiumpro -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentiumpro -O3 -pipe -fomit-frame-pointer"
Pentium II (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium2 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium2 -O3 -pipe -fomit-frame-pointer"
Celeron (Mendocino), aka Celeron1 (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium2 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium2 -O3 -pipe -fomit-frame-pointer"
Pentium III (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium3 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium3 -O3 -pipe -fomit-frame-pointer"
Celeron (Coppermine) aka Celeron2 (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium3 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium3 -O3 -pipe -fomit-frame-pointer"
Celeron (Willamette?) (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium4 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium4 -O3 -pipe -fomit-frame-pointer"
Pentium 4 (Intel) CHOST="i686-pc-linux-gnu" CFLAGS="-march=pentium4 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=pentium4 -O3 -pipe -fomit-frame-pointer"
Eden C3/Ezra (Via) CHOST="i586-pc-linux-gnu" CFLAGS="-march=i586 -m3dnow -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=i586 -m3dnow -O3 -pipe -fomit-frame-pointer"
quote : the ezra doesn't have any special instructions that you could optimize for, just consider is a K6-3...basically a p2 with 3dnow
K6 (AMD) CHOST="i586-pc-linux-gnu" CFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=k6 -O3 -pipe -fomit-frame-pointer"
K6-2 (AMD) CHOST="i586-pc-linux-gnu" CFLAGS="-march=k6-2 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=k6-2 -O3 -pipe -fomit-frame-pointer"
K6-3 (AMD) CHOST="i586-pc-linux-gnu" CFLAGS="-march=k6-3 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=k6-3 -O3 -pipe -fomit-frame-pointer"
Athlon (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon -O3 -pipe -fomit-frame-pointer"
Athlon-tbird, aka K7 (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon-tbird -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon-tbird -O3 -pipe -fomit-frame-pointer"
Athlon-tbird XP (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon-xp -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon-xp -O3 -pipe -fomit-frame-pointer"
Athlon 4(AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon-4 -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon-4 -O3 -pipe -fomit-frame-pointer"
Athlon XP (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon-xp -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon-xp -O3 -pipe -fomit-frame-pointer"
Athlon MP (AMD) CHOST="i686-pc-linux-gnu" CFLAGS="-march=athlon-mp -O3 -pipe -fomit-frame-pointer" CXXFLAGS="-march=athlon-mp -O3 -pipe -fomit-frame-pointer"
603 (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char"
603e (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char"
604 (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char"
604e (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char"
750 aka as G3 (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-mcpu=750 -O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-mcpu=750 -O3 -pipe -fomit-frame-pointer -fsigned-char"
Note: do not use -march=
7400, aka G4 (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-mcpu=7400 -O3 -pipe -fomit-frame-pointer -fsigned-char -maltivec" CXXFLAGS="-mcpu=7400 -O3 -pipe -fomit-frame-pointer -fsigned-char -maltivec"
Note: do not use -march=
7450, aka G4 second generation (PowerPC) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-mcpu=7450 -O3 -pipe -fomit-frame-pointer -fsigned-char -maltivec" CXXFLAGS="-mcpu=7450 -O3 -pipe -fomit-frame-pointer -fsigned-char -maltivec"
Note: do not use -march=
PowerPC (If you don't know which one) CHOST="powerpc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char" CXXFLAGS="-O3 -pipe -fomit-frame-pointer -fsigned-char"
Sparc CHOST="sparc-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer" CXXFLAGS="-O3 -pipe -fomit-frame-pointer"
Sparc 64 CHOST="sparc64-unknown-linux-gnu" CFLAGS="-O3 -pipe -fomit-frame-pointer" CXXFLAGS="-O3 -pipe -fomit-frame-pointer"GCC 使用指南 GCC 使用指南 GCC 使用指南





转载自:http://blog.csdn.net/casularm/archive/2005/03/09/316143.aspx

- 作者:michaelbob2005年03月20日, 星期日 13:55 回复(0)| 引用(0)加入博采

zzGCC使用指南

创建时间:2000-06-08
文章属性:转载
文章提交:quack(quack_at_xfocus.org)


GCC使用指南

使用语法:
gcc [ option | filename ]...
g++ [ option | filename ]...

其中 option 为 gcc 使用时的选项(后面会再详述),
而 filename 为欲以 gcc 处理的文件
说明:
这 C 与 C++ 的 compiler 已将产生新程序的相关程序整合起来。产
生一个新的程序需要经过四个阶段:预处理、编译、汇编,连结,
而这两个编译器都能将输入的文件做不同阶段的处理。虽然原始程序
的扩展名可用来分辨编写原始程序码所用的语言,但不同的 compiler
,其预设的处理程序却各不相同:

gcc预设经由预处理过(扩展名为.i)的文件为 C 语言,并於程
式连结阶段以 C 的连结方式处理。

g++预设经由预处理过(扩展名为.i)的文件为 C++ 语言,并於程

序连结阶段以 C++ 的连结方式处理。


原始程序码的扩展名指出所用编写程序所用的语言,以及相对应的处
理方法:

.cC 原始程序 ; 预处理、编译、汇编
.CC++ 原始程序 ; 预处理、编译、汇编
.cc C++ 原始程序 ; 预处理、编译、汇编
.cxxC++ 原始程序 ; 预处理、编译、汇编
.mObjective-C 原始程序 ; 预处理、编译、汇编
.i已经过预处理之 C 原始程序; 编译、汇编
.ii 已经过预处理之 C++ 原始程序; 编译、汇编
.s组合语言原始程序 ; 汇编
.S组合语言原始程序 ; 预处理、汇编
.h预处理文件(标头文件) ; (不常出现在指令行)


其他扩展名的文件是由连结程序来处理,通常有:

.oObject file
.aArchive file


除非编译过程出现错误,否则 "连结" 一定是产生一个新程序的最
後阶段。然而你也可以以 -c、-s 或 -E 等选项,将整个过程自四
个阶段中的其中一个停止。在连结阶段,所有与原始码相对应的
.o 文件、程序库、和其他无法自文件名辨明属性的文件(包括不以 .o
为扩展名的 object file 以及扩展名为 .a 的 archive file)都会
交由连结程序来处理(在指令行将那些文件当作连结程序的参数传给
连结程序)。


选项:
不同的选项必须分开来下:例如 `-dr' 这个选项就与 `-d -r' 大
不相同。

绝大部份的 `-f' 及 `-W' 选项都有正反两种形式:-fname 及
-fno-name (或 -Wname 及 -Wno-name)。以下只列出非预设的那个
形式。

以下是所有选项的摘要。以形式来分类。选项的意义将另辟小节说
明。

一般性(概略、常用的)选项
-c -S -E -o file -pipe -v -x language

程序语言选项
-ansi -fall-virtual -fcond-mismatch
-fdollars-in-identifiers -fenum-int-equiv
-fexternal-templates -fno-asm -fno-builtin
-fno-strict-prototype -fsigned-bitfields
-fsigned-char -fthis-is-variable
-funsigned-bitfields -funsigned-char
-fwritable-strings -traditional -traditional-cpp
-trigraphs

编译时的警告选项
-fsyntax-only -pedantic -pedantic-errors -w -W
-Wall -Waggregate-return -Wcast-align -Wcast-qual
-Wchar-subscript -Wcomment -Wconversion
-Wenum-clash -Werror -Wformat -Wid-clash-len
-Wimplicit -Winline -Wmissing-prototypes
-Wmissing-declarations -Wnested-externs -Wno-import
-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreturn-type -Wshadow -Wstrict-prototypes -Wswitch
-Wtemplate-debugging -Wtraditional -Wtrigraphs
-Wuninitialized -Wunused -Wwrite-strings

除错选项
-a -dletters -fpretend-float -g -glevel -gcoff
-gxcoff -gxcoff+ -gdwarf -gdwarf+ -gstabs -gstabs+
-ggdb -p -pg -save-temps -print-file-name=library
-print-libgcc-file-name -print-prog-name=program

最佳化选项
-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -felide-constructors
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -fforce-mem -finline-functions
-fkeep-inline-functions -fmemoize-lookups
-fno-default-inline -fno-defer-pop
-fno-function-cse -fno-inline -fno-peephole
-fomit-frame-pointer -frerun-cse-after-loop
-fschedule-insns -fschedule-insns2
-fstrength-reduce -fthread-jumps -funroll-all-loops
-funroll-loops -O -O2

预处理选项
-Aassertion -C -dD -dM -dN -Dmacro[=defn] -E -H
-idirafter dir -include file -imacros file -iprefix
file -iwithprefix dir -M -MD -MM -MMD -nostdinc -P
-Umacro -undef

汇编程序选项
-Wa,option

连结程序选项
-llibrary -nostartfiles -nostdlib -static -shared
-symbolic -Xlinker option -Wl,option -u symbol

目录选项
-Bprefix -Idir -I- -Ldir

Target Options
-bmachine -V version

与机器(平台)相关的选项
M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

VAX Options
-mg -mgnu -munix

SPARC Options
-mepilogue -mfpu -mhard-float -mno-fpu
-mno-epilogue -msoft-float -msparclite -mv8
-msupersparc -mcypress

Convex Options
-margcount -mc1 -mc2 -mnoargcount

AMD29K Options
-m29000 -m29050 -mbw -mdw -mkernel-registers
-mlarge -mnbw -mnodw -msmall -mstack-check
-muser-registers

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3 -msvr4
-mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS6000 Options
-mfp-in-toc -mno-fop-in-toc

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mcpu=cpu type -mips2 -mips3 -mint64 -mlong64
-mlonglong128 -mmips-as -mgas -mrnames -mno-rnames
-mgpopt -mno-gpopt -mstats -mno-stats -mmemcpy
-mno-memcpy -mno-mips-tfile -mmips-tfile
-msoft-float -mhard-float -mabicalls -mno-abicalls
-mhalf-pic -mno-half-pic -G num -nocpp

i386 Options
-m486 -mno-486 -msoft-float -mno-fp-ret-in-387

HPPA Options
-mpa-risc-1-0 -mpa-risc-1-1 -mkernel -mshared-libs
-mno-shared-libs -mlong-calls -mdisable-fpregs
-mdisable-indexing -mtrailing-colon

i960 Options
-mcpu-type -mnumerics -msoft-float
-mleaf-procedures -mno-leaf-procedures -mtail-call
-mno-tail-call -mcomplex-addr -mno-complex-addr
-mcode-align -mno-code-align -mic-compat
-mic2.0-compat -mic3.0-compat -masm-compat
-mintel-asm -mstrict-align -mno-strict-align
-mold-align -mno-old-align

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float -msoft-float

System V Options
-G -Qy -Qn -YP,paths -Ym,dir

Code Generation Options
-fcall-saved-reg -fcall-used-reg -ffixed-reg
-finhibit-size-directive -fnonnull-objects
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-returno -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global
-fverbose-asm

PRAGMAS
Two`#pragma'directivesaresupported for GNU C++, to
permit using the same header file for two purposes:asa
definitionofinterfaces to a given object class, and as
the full definition of the contents of that objectclass.

#pragma interface
(C++only.) Usethisdirective in header files
that define object classes, to save spaceinmost
oftheobject files that use those classes.Nor-
mally, local copies of certain information(backup
copies of inline member functions, debugging infor-
mation, and the internal tables that implement vir-
tualfunctions)mustbe kept in each object file
that includes class definitions.You can usethis
pragmatoavoidsuch duplication.When a header
file containing `#pragma interface' is includedin
acompilation, this auxiliary information will not
be generated (unless the main input source file it-
selfuses `#pragma implementation').Instead, the
object files will contain references to be resolved
at link time.

#pragma implementation

#pragma implementation "objects.h"
(C++only.)Use this pragma in a main input file,
when you wantfulloutputfromincludedheader
filesto be generated (and made globally visible).
The includedheaderfile,inturn,shoulduse
`#pragmainterface'.Backup copies of inline mem-
ber functions, debugging information, andthein-
ternaltablesused to implement virtual functions
are all generated in implementation files.

If you use `#pragma implementation' withnoargu-
ment,itapplies to an include file with the same
basename asyoursourcefile;forexample,in
`allclass.cc',`#pragmaimplementation' by itself
is equivalentto`#pragmaimplementation
"allclass.h"'.Use the string argument if you want
a single implementation file to includecodefrom
multiple header files.

Thereis no way to split up the contents of a sin-
gle header file into multiple implementation files.

文件说明
file.c C source file
file.h C header (preprocessor) file
file.i 经预处理过的 C source file
file.C C++ source file
file.ccC++ source file
file.cxx C++ source file
file.m Objective-C source file
file.s assembly language file
file.o object file
a.outlink edited output
TMPDIR/cc* temporary files
LIBDIR/cpp preprocessor
LIBDIR/cc1 compiler for C
LIBDIR/cc1plus compiler for C++
LIBDIR/collect linker front end needed on some machines
LIBDIR/libgcc.aGCC subroutine library
/lib/crt[01n].ostart-up routine
LIBDIR/ccrt0 additional start-up routine for C++
/lib/libc.astandard C library, 参阅 man page intro(3)
/usr/include standard directory for #include files
LIBDIR/include standard gcc directory for #include files
LIBDIR/g++-include additional g++ directory for #include

LIBDIR is usually /usr/local/lib/machine/version.
TMPDIR comes from the environment variable TMPDIR (default
/usr/tmp if available, else /tmp).

分享到:
评论

相关推荐

    安装部署Linux安装gcc的四种方法

    【安装部署】Linux安装gcc的四种方法 常见的有以下几种安装方法 1、源码安装 2、rpm包安装 3、yum安装 (RedHat、CentOS) 4、apt-get安装 (debian,ubuntu) 以安装gcc为例,登陆https://gcc.gnu.org/,下载...

    gcc4.8.5离线安装rpm包含依赖

    ## 解压gcc ```bash tar -xvf gcc-rpms.tar.gz ``` ## rpm安装gcc ```bash rpm -Uvh *.rpm --nodeps --force ``` ### 验证 ```bash gcc -v Using built-in specs. COLLECT_GCC=gcc COLLECT_LTO_WRAPPER=/usr/...

    CentOS7升级GCC版本到gcc 8.3.0,解决GLIBCXX-3.4.21 not found 问题

    $ unzip gcc-8.3.0.zip 解压完成,进入文件目录: $ cd gcc-8.3.0 利用源码包里自带的工具下载所需要的依赖项: $ ./contrib/download_prerequisites 创建编译输出目录: mkdir build 进入build目录: $ cd build 生成...

    windows平台arm-gcc编译环境搭建(资源包及搭建步骤,及测试demo)

    windows平台arm-gcc编译环境搭建(资源包及搭建步骤,及测试demo) windows平台arm-gcc编译环境搭建(资源包及搭建步骤,及测试demo) windows平台arm-gcc编译环境搭建(资源包及搭建步骤,及测试demo) windows平台arm-...

    gcc各版本文档.rar

    gcc各版本文档,具体包括: gcc11_2、gcc10_3、gcc9_4、gcc8_5、gcc7_5、gcc6_5、gcc5_5、gcc4_9_4、gcc4_8_5、gcc4_7_4、gcc4_6_4、gcc4_5_4、gcc4_4_7、gcc4_3_6、gcc4_2_4、gcc4_1_2、gcc4_0_4、gcc3_4_6

    GCC-PHAT.zip

    根据加权函数的不同,广义互相关函数有多种不同的变形,其中广义互相关-相位变换方法(Generalized Cross Correlation PHAse Transformation,GCC-PHAT)方法应用最为广泛。GCC-PHAT方法本身具有一定的抗噪声和抗...

    gcc-4.8.5.tar.gz

    GCC是一个用于linux系统下编程的编译器 是一个用于编程开发的自由编译器。最初,GCC只是一个C语言编译器,它是GNU C Compiler 的英文缩写。随着众多自由开发者的加入和GCC自身的发展,如今的GCC已经是一个包含众多...

    RHEL5 下按装Apache所需gcc安装包

    rhel5 gcc安装包(1).zip rhel5 gcc安装包(2).zip rhel5 gcc安装包(4).zip rhel5 gcc安装包(5).zip 一共四个包~~~因为只能上传20M....只能分4个包来上传,所有文件如下: compat-gcc-34-3.4.6-4.i386.rpm gcc-gnat-...

    中标麒麟手工升级GCC-8.3.0

    已经安装GCC 4.9.3 #二、安装前准备# 1、 下载 GCC-8.3.0 从 https://ftp.gnu.org/gnu/gdb/ 下载 gcc-8.3.0.tar.gz,复制到NeoKylin用户目录/tools。 2、 GCC需要的相关依赖项 gcc-8.3.0 依赖 gmp-6.1.0、mpfr-3.1.4...

    winlibs gcc/g++编译器 mingw64 10.0.0-r4

    它实际上是将经典的开源 C语言 编译器 GCC 移植到了 Windows 平台下,并且包含了 Win32API ,因此可以将源代码编译为可在 Windows 中运行的可执行程序。而且还可以使用一些 Windows 不具备的,Linux平台下的开发工具...

    arm-linux-gcc-3.4.1(交叉编译器)

    arm-linux-gcc交叉编译器,版本3.4.1,用于Linux下的ARM开发。 安装方法: 1. tar zxvf arm-linux-gcc-3.4.1.tgz -C/ 2. 编辑 ~/.bashrc ,加入 export PATH=$PATH:/usr/local/arm/3.4.1/bin 3. 验证安装 [root@...

    linux 离线安装gcc.zip

    linux 离线安装gcc4.8.5 (简单易懂,已成功安装): mpfr-3.1.1-4.el7.x86_64.rpm libmpc-1.0.1-3.el7.x86_64.rpm kernel-headers-3.10.0-862.el7.x86_64.rpm glibc-headers-2.17-222.el7.x86_64.rpm glibc-...

    Linux完整GCC安装包,全部依赖

    在安装Gcc的时候老是报错,在网上查资料,弄了好久才搞定,现把完整Gcc安装包(包括依赖文件)贴出来,希望后来的新人能少走弯路!因CSDN只能上传小于15MB的文件,所以分成两个压缩包上传了,需要两个都下载,切记!

    GCC G++ rpm安装包.part1.rar

    包括linux上安装GCC或G++的所有安装软件和安装包。 压缩包中有: libstdc++-3.4.6-11.i386.rpm libstdc++-devel-3.4.6-11.i386.rpm gcc-c++-3.4.6-11.i386.rpm glibc-2.3.4-2.43.i386.rpm glibc-common-2.3.4-2.43....

    MinGW (gcc9.2.0-2) 解压即可使用

    MinGW\var\cache\mingw-get\packages 这个目录下有MinGW Installation Manager下载的安装包,gcc-ada-9.2.0-2-mingw32-bin.tar.xz、gcc-c++-9.2.0-2-mingw32-bin.tar.xz、gcc-core-9.2.0-2-mingw32-bin.tar.xz、gcc-...

    gcc中的内嵌汇编语言

    在Linux的核心代码中,还是存在相当一部分的汇编语言代码。如果你想顺利阅读Linux代码的话,你...另一部分则是利用gcc的内嵌式汇编语言语句asm嵌在Linux的C语言代码中的。这篇文章主要是介绍第二种形式的汇编语言代码。

    离线安装GCC与GCC-C++

    离线安装GCC与GCC-C++

    arm-linux-gcc交叉编译器 3.4.1

    arm-linux-gcc交叉编译器,版本3.4.1,用于Linux下的ARM开发。 安装方法: 1. tar zxvf arm-linux-gcc-3.4.1.tgz -C/ 2. 编辑 ~/.bashrc ,加入 export PATH=$PATH:/usr/local/arm/3.4.1/bin 3. 验证安装 [root@...

    gcc g++ rpm 安装包

    对于有些linux没有安装gcc,可以使用这个包安装! 一定要按着下面的顺序做,否则会报错。 rpm -Uvh glibc-kernheaders-2.4-9.1.98.EL.i386.rpm rpm -Uvh glibc-headers-2.3.4-2.25.i386.rpm rpm -Uvh glibc-devel-...

    windows版本的tdm-gcc

    TDM-GCC is a compiler suite for Windows. It combines the most recent stable release of the GCC toolset with the free and open-source MinGW or MinGW-w64 runtime APIs to create a LIBRE alternative to ...

Global site tag (gtag.js) - Google Analytics